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(With special regards to Z. L.)

The Jahn-Teller effect came into life shortly after the Big Bang,

together with the first polyatomic molecules. Unfortunately,

there were no scientists around to witness this seminal event.

No exact birth date ⇒ no birthday party (1)

It took > 13 billion years to discover this effect. The birth date

of Edward Teller is known (Jan. 15, 1908 in Budapest), but he

did not discover the effect right then. He first had to meet Lew

Dawidowitsch Landau in 1934, who was born Jan. 22, 1908 in

Baku. Landau claimed that the degeneracy of an electronic

state, which is induced by symmetry, will in general be

destroyed. Teller tried to argue against this statement.
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He started immediately to work on this problem with his student

Hermann Arthur Jahn (born May 31, 1907 in Colchester, Essex,

died 1979 in Southampton). For all conceivable symmetries of

molecules they found no exceptions from Landau’s theorem.

The siuation for linear molecules has been investigated before

by R. Renner [Z. Phys. 92 (1934) 172].

Theorem: Jahn-Teller theorem

. . . All non-linear nuclear configurations are therefore unstable

for an orbitally degenerate electronic state.

This was indeed the first treatment of conical intersections,

published in 1937 [H. A. Jahn, E. Teller, Proc. Royal Soc.

London 161 (1937) 220]. This intriguing subject has fascinated

scientists ever since.
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Other nice things we owe to Teller: nuclear weapons and the

hydrogen bomb. It appears that he was a thoroughly nasty

fellow, easily getting into conflicts with his colleagues. He was

promoting nuclear warfare througout his life, later probably his

main job. Therefore, he was awarded the Ig-Nobel prize “for his

lifelong efforts to change the meaning of peace as we know it”

in 1991 and the Presidential Medal of Freedom by President

George W. Bush just before his death on Sept. 9, 2003.

In contrast, Lew Landau was awarded the Nobel prize in 1962

for his fundamental work on the theory of condensed matter

(e. g. superfluidity). The same year, he was involved in a bad

car accident from which he never recovered and died on April

1, 1968.
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A set G with elements a, b is closed with respect to the

operation ◦ if

a, b ∈ G ⇒ (a ◦ b) ∈ G. (closure)

Definition:

A group is a system (G, ◦) that consists of an operation ◦ with

respect to which the set G is closed and which fulfills the

following conditions:

1 a ◦ (b ◦ c) = (a ◦ b) ◦ c ∀ a, b, c ∈ G (associative).

2 It exits a neutral element e ∈ G with e ◦ a = a ∀ a ∈ G.

3 For each element a ∈ G there exists an inverse element

a−1 ∈ G with a ◦ a−1 = a−1 ◦ a = e.
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Definition:

A group is called Abelian if

a ◦ b = b ◦ a ∀ a, b ∈ G

i. e. if elements a, b commute with respect to ◦.

Corollar:

The symmetry operations Ŝk of any geometrical object, that

transform this object into itself, form a group, the so-called point

group.

Theorem:

The representation of any point group, containing a rotational

axis Cn with n > 2, contains at least one degenerate irreducible

representation. Thus, such a point group is non-Abelian.
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Corollar:

Action of any symmetry operator Ŝk on the molecule belonging

to point group G does not change the physics of the system.

∴ [Ĥ, Ŝk ] = 0, ∀ Ŝk ∈ G.

Table: Character table of the D3h point group

D3h E 2C3 3C2 σh 2S3 3σv

A′
1 1 1 1 1 1 1 αxx + αyy , αzz

A′
2 1 1 -1 1 1 -1 Rz

E ′ 2 -1 0 2 -1 0 (Tx , Ty ) (αxx − αyy , αxy )

A′′
1 1 1 1 -1 -1 -1

A′′
2 1 1 -1 -1 -1 1 Tz

E ′′ 2 -1 0 -2 1 0 (Rx , Ry ) (αxy , αzx )
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Coupled Schrödinger equation in the adiabatic representation:

[T̂n1 + V(Q)− E1]χ(Q) = Λχ(Q). (2)

T̂n is the nuclear kinetic operator, V(Q) the diagonal adiabatic

PE matrix, χ(Q) the nuclear wave function vector, and Λ the

nonadiabatic coupling matrix. The matrix elements λij are

expressed as

Λij = −〈φi |T̂n|φj〉+ 〈φi |∇|φj〉∇, (3)

where φ are the adiabatic electronic wave functions which are

eigenfunctions of the electronic Hamiltonian

Ĥeφi(r, Q) = Vi(Q)φi(r, Q) (4)

The full adiabatic molecular wave function can be expanded as

Ψ(r, Q) =
∑

i

φi(r, Q)χi(Q). (5)
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The Λij diverge at a conical intersection.

⇒ Change to diabatic representation:

Ψ(r, Q) = φ†UU†χ = (U†φ)† U†χ = φ(d)†χ(d). (6)

To simplify the coupled Schrödinger equation eq. (2) we chose

∇U + FU = 0 (Fji = 〈φj |∇φi〉, {φk} is a complete basis) and we

get after some math[
(V− E1)U− ~2

2m
U∇2

]
χ(d) = 0. (7)

We can multiply with U† from the left and obtain the working

equations in the diabatic basis[
V(d) − E1− ~2

2m
∇2
]

χ(d) = 0. (8)
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The diabatic potential matrix V(d) = U†VU is no longer

diagonal. The main issue is to find the appropriate

adiabatic-to-diabatic transformation U.

We now introduce the crude adiabatic approximation

Ψ(r, Q)crude =
∑

i

φ0
i (r, Q0)χ

0
i (Q). (9)

The total wave function at any point Q is expressed using the

electronic wave functions φ0
i at the reference point Q0.

Jahn-Teller and pseudo-Jahn-Teller Hamiltonians can be

derived using the symmetry of φ0
i at Q0.

H. C. Longuet-Higgins, Adv. Spectrosc., 2 (1961) 429.

Wolfgang Eisfeld Treatment of Jahn-Teller and pseudo-Jahn-Teller effects



History Symmetry Diabatization JT & PJT Fitting Application Acknowledgments

Theorem: Jahn and Teller, 1937

All non-linear nuclear configurations are . . . unstable for an

orbitally degenerate electronic state.

Why is this the case? We know that in the adiabatic

representation V(Q) is diagonal and therefore

det

(
V (d)

11 − V1 V (d)
12

V (d)
12 V (d)

22 − V2

)
!
= 0 (10)

The solution for the adiabatic potentials is

V1/2 =
1
2

[(
V (d)

11 + V (d)
22

)
±
√(

V (d)
11 − V (d)

22

)2
+
(

V (d)
12

)2
]

.

(11)

Note, that for vanishing coupling V (d)
12 the diabatic and adiabatic

functions are the same.
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The coordinate along which V (d)
12 6= 0 is found by symmetry

considerations, namely

Γ
φ

(d)
1
× Γ

φ
(d)
2
× ΓQi

⊃ ΓA (ΓA ≡ totally symmetric).

x and y shall transform like a degenerate irrep.

Transformation into the complex plane:

Q+ = x + iy (12a)

Q− = x − iy . (12b)
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φx and φy are linearly independent electronic eigenfunctions

with the same eigenvalue and Ψx = φxχx etc. A unitary

transformation matrix

U† =
1√
2

(
1 i

1 −i

)
(13)

is defined and the two components of the degenerate state

wave function are transformed by

U†Ψ(xy) = U†

(
〈Ψx |
〈Ψy |

)
=

1√
2

(
〈Ψx |+ i〈Ψy |
〈Ψx | − i〈Ψy |

)
=

(
〈Ψ+|
〈Ψ−|

)
= Ψ±.

(14)

Wolfgang Eisfeld Treatment of Jahn-Teller and pseudo-Jahn-Teller effects



History Symmetry Diabatization JT & PJT Fitting Application Acknowledgments

In the complex plane we can check the action of an arbitrary

rotation operator Ĉn.

E. g. Ĉ3:

Ĉ3Q+ = e+2πi/3Q+ and Ĉ3Q− = e−2πi/3Q− (15)

Ĉ3〈Ψ+| = e+2πi/3〈Ψ+| and Ĉ3〈Ψ−| = e−2πi/3〈Ψ−| (16a)

Ĉ3|Ψ+〉 = e−2πi/3|Ψ+〉 and Ĉ3|Ψ−〉 = e+2πi/3|Ψ−〉.(16b)

Now expand the electronic Hamiltonian Ĥel in the spectral

representation in the eigenstates {|Ψ+〉, |Ψ−〉} as

Ĥel = Ψ†
±H±Ψ± =

∑
i,j

|Ψi〉Hij〈Ψj | (i , j = +,−). (17)
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The matrix elements Hij = 〈Ψi |Ĥel |Ψj〉 are expanded as Taylor

series in the nuclear coordinates:

Hij =
∑

p+q=0

c(ij)
p,q

(p + q)!
Qp

i Qq
j (i , j = +,−). (18)

Since [Ĥ, Ŝk ] = 0, operation of any Ŝk on any term of

expansion (17) must result in an eigenvalue of unity.

For example H++:

Ĉ3|Ψ+〉Qp
+Qq

−〈Ψ+| = e−2πi/3e(+p)2πi/3e(−q)2πi/3e2πi/3|Ψ+〉Qp
+Qq

−〈Ψ+|.
(19)

⇒ c(++)
p,q 6= 0 ∀ (p − q) mod 3 = 0.
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Table: Non-vanishing terms of the Hamiltonian matrix in complex
representation.

order diagonal H++ = H−− off-diagonal H+−= (H−+)∗

0 Q0
+Q0

− —

1 — Q0
+Q1

−
2 Q1

+Q1
− Q2

+Q0
−

3 Q3
+Q0

− and Q0
+Q3

− Q1
+Q2

−
4 Q2

+Q2
− Q0

+Q4
− and Q3

+Q1
−

5 Q4
+Q1

− and Q1
+Q4

− Q2
+Q3

− and Q5
+Q0

−
6 Q6

+Q0
− and Q3

+Q3
− and Q0

+Q6
− Q1

+Q5
− and Q4

+Q2
−

...
...

...
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Usually the real representation is favourable, which is obtained

by

Ĥel = Ψ†
±U†UH±U†UΨ± = Ψ†

(xy)HΨ(xy). (20)

This leads to the factorized expression

H = UH±U† =
∑
n=0

1
n!

{(
V(n) 0

0 V(n)

)
+

(
W(n) Z(n)

Z(n) −W(n)

)}
.

(21)

All matrix elements V(n), W(n), and Z(n) are real functions of

the real nuclear coordinates x and y .
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Lets have a look at the first few of these functions which

represent the uncoupled potentials:

V(0) = a(0)
1 (22a)

V(1) = 0 (22b)

V(2) = a(2)
1

[
x2 + y2

]
(22c)

V(3) = a(3)
1

[
2x3 − 6 xy2

]
(22d)

V(4) = a(4)
1

[
x4 + 2x2y2 + y4

]
(22e)

...
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Here are some coupling terms. Note that the expansion

coefficients λ
(n)
k must be the same for W and Z.

W(0) = 0 (23a)

W(1) = λ
(1)
1 x (23b)

W(2) = λ
(2)
1

[
x2 − y2

]
(23c)

W(3) = λ
(3)
1

[
x3 + xy2

]
(23d)

W(4) = λ
(4)
1

[
x4 − 6x2y2 + y4

]
+ λ

(4)
2

[
x4 − y4

]
(23e)

...

Z(0) = 0 (24a)

Z(1) = λ
(1)
1 y (24b)

Z(2) = −2λ
(2)
1 xy (24c)

Z(3) = λ
(3)
1

[
x2y + y3

]
(24d)

Z(4) = λ
(4)
1

[
4x3y − 4xy3

]
+ λ

(4)
2

[
−2x3y − 2xy3

]
(24e)

...
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Figure: The well-known “Mexican hat” potential, arising from linear
Jahn-Teller coupling. Note that this potential is cylindrically symmetric
and lacks the n equivalent minima expected for systems with a Cn

symmetry axis.

Wolfgang Eisfeld Treatment of Jahn-Teller and pseudo-Jahn-Teller effects



History Symmetry Diabatization JT & PJT Fitting Application Acknowledgments

Definition:

pseudo-Jahn-Teller coupling is the vibronic coupling between a

degenerate and a nondegenerate state which is induced by a

degenerate mode. pseudo-Jahn-Teller is inter-state while

Jahn-Teller is intra-state coupling.

Example: (A + E)⊗ e pseudo-Jahn-Tellereffect

Transform x and y into the complex plane according to eq. (12).

U†Ψ(a12) =
1√
2


√

2 0 0

0 1 i

0 1 −i


 〈Ψa|
〈Ψ1|
〈Ψ2|

 =

 〈Ψa|
〈Ψ+|
〈Ψ−|

 = Ψ(a+−).

(25)
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Use the spectral representation of the electronic Hamiltonian

Ĥel = Ψ†
(a+−)H(a+−)Ψ(a+−) =

∑
i,j

|Ψi〉Hij〈Ψj | (i , j = a,+,−)

(26)

and expand the matrix elements Hij = 〈Ψi |Ĥel |Ψj〉
(i , j = a,+,−) in Q+ and Q−.

Ĉ3|Ψa〉Qp
+Qq

−〈Ψ+| = 1 · e(+p)2πi/3 · e(−q)2πi/3 · e−2πi/3 · |Ψa〉Qp
+Qq

−〈Ψ+|
(27)

⇒ c(a+)
pq 6= 0 ∀ (p − q − 1) mod 3 = 0. (28)

Back-transform by

Ĥel = Ψ†
(a+−)U

†UH(a+−)U
†UΨ(a+−) = Ψ†

(a12)HΨ(a12). (29)
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We obtain exactly the same V(n), W(n), and Z(n) functions as

for JT. The fully coupled JT and PJT problem is expressed by

the factorized expansion

H = UHU†

=
∑
n=0

1
n!


 V(n)

A 0 0

0 V(n)
E 0

0 0 V(n)
E

+

 0 0 0

0 W(n)
JT Z(n)

JT

0 Z(n)
JT −W(n)

JT



+

 0 W(n)
PJT −Z(n)

PJT

W(n)
PJT 0 0

−Z(n)
PJT 0 0


 (30)

=
∑
n=0

1
n!

{
V(n)

diag + V(n)
JT + V(n)

PJT

}
. (31)
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Non-degenerate coordinates can be added as functions A(n)

with

ĈmA(n) = 1 · A(n) (m > 2). (32)

These terms can be multiplied with the V, W, and Z terms and

added to the diagonal.

For inter-state couplings between two degenerate states, the A
terms become coupling functions.
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H =
∑

n

∑
m

1
n!m!


V(n)

1 +A(m)
1 0 0 0

0 V(n)
1 +A(m)

1 0 0

0 0 V(n)
2 +A(m)

2 0

0 0 0 V(n)
2 +A(m)

2



+


W(n)

1 Z(n)
1 0 0

Z(n)
1 −W(n)

1 0 0

0 0 W(n)
2 Z(n)

2

0 0 Z(n)
2 −W(n)

2



+


0 0 W(n)

12 Z(n)
12

0 0 Z(n)
12 −W(n)

12

W(n)
12 Z(n)

12 0 0

Z(n)
12 −W(n)

12 0 0



+


0 0 A(m)

12 + V(n)
12 0

0 0 0 A(m)
12 + V(n)

12

A(m)
12 + V(n)

12 0 0 0

0 A(m)
12 + V(n)

12 0 0

 (33)
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The black magic of fitting Hamiltonian parameters

Select model potential

Minimal models (e. g. linear vibronic coupling) and minimal
fits for standard vibronic coupling spectra (large molecules,
ultra-short dynamics)
Refined models for nonadiabatic dynamics studies (e. g.
internal conversion): Higher-order, mode-mode couplings,
PESs over extended regions.

Choice of coordinates: Cartesian or curvilinear normal

modes, symmetry coordinates, symmetrized Morse

coordinates, etc.

Accurate ab initio calculations of the PES along all

required coordinates.
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Fit eigenvalues of diabatic matrix with respect to adiabatic

ab initio energies. For matrices larger than 2× 2 this

requires a nonlinear optimization of the parameters in

the potential matrix.

Always fit x and y components simultaneously. Otherwise,

the potential along the left out coordinate may be

reproduced very badly (unless the applied model is nearly

perfect).

Inter-state couplings (e. g. pseudo-Jahn-Teller) are

obtained from the deviations of the true data points from

the assumed diagonal potentials; intra-state couplings

(e. g. Jahn-Teller) show up on the diagonal as well.
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Fitting strategy:

Build up the fit step by step.

Separate modes.

Start with low coupling orders.

Increase coupling orders.

Freeze parameters and fit mode-mode couplings or

inter-state couplings (e. g. pseudo-Jahn-Teller).

Finally, unfreeze and get fully coupled results.
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Application to photoionization dynamics of NH3

photoelectron spectrum of NH3 shows two bands

ground state band shows a well resolved, regular

progression

exited state band is completely diffuse and congested

no fluorescence from upper state

ionic ground state has planar equilibrium geometry

state symmetries are 2A′′
2 and 2E ′ in D3h and 2A1 and 2E in

C3v

⇒ pseudo-Jahn-Teller coupling only possible for pyramidal

geometries!
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Coordinates:

S1 = 3−1/2(∆R1 + ∆R2 + ∆R3) sym. stretching (34)

S2 = ∆β umbrella (35)

S3 = 6−1/2(2∆R1 −∆R2 −∆R3) e′x stretching (36)

S4 = 2−1/2(∆R2 −∆R3) e′y stretching (37)

S5 = 6−1/2(2∆α1 −∆α2 −∆α3) e′x bending (38)

S6 = 2−1/2(∆α2 −∆α3 e′ bending (39)

The potential matrix can be factorized into several contributions

according to

V = V(S1) + V(S2) + Vdiag + VJT + VPJT . (40)
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The potentials along S1 are given by the diagonal matrix V(S1)

with elements V(S1) (j = A, E)

V (S1)
j = D(2)

j {1− exp [−αj(rj − S1)]}2

+ D(3)
j {1− exp [−αj(rj − S1)]}3

− D(2)
j {1− exp [−αj rj ]}2 − D(3)

j {1− exp [−αj rj ]}3(41)

The potentials along the umbrella coordinate S2 are

approximated by the power series

V(S2) =
∑
n=1

1
(2n)!

 u(n)
A 0 0

0 u(n)
E 0

0 0 u(n)
E

S2n
2 . (42)
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The uncoupled diagonal contribution of the e modes is

expressed by the matrix

Vdiag =

 V diag
A 0 0

0 V diag
E 0

0 0 V diag
E

 , (43)

with the diagonal elements expanded as

V diag
j =

∑
n=0

1
n!
V(n)

j (S3, S4) +
∑
n=0

1
n!
V(n)

j (S5, S6) (j = A, E).

(44)
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The contribution by JT coupling is given by

VJT =
∑

j=3,5

∑
n=1

1
n!

 0 0 0

0 W(n)
JT (Sj , Sj+1) Z(n)

JT (Sj , Sj+1)

0 Z(n)
JT (Sj , Sj+1) −W(n)

JT (Sj , Sj+1)

 ,

(45)

and the coupling due to the PJT effect reads as

VPJT =S2

∑
j=3,5

∑
n=1

1
n!

(46)

 0 W(n)
PJT (Sj , Sj+1) −Z(n)

PJT (Sj , Sj+1)

W(n)
PJT (Sj , Sj+1) 0 0

−Z(n)
PJT (Sj , Sj+1) 0 0

 .

The PJT matrix is multiplied by S2 (S2 = 0: planar config.).

Wolfgang Eisfeld Treatment of Jahn-Teller and pseudo-Jahn-Teller effects



History Symmetry Diabatization JT & PJT Fitting Application Acknowledgments

Figure: Adiabatic (solid) and diabatic (dashed) energies along S5 (a)
and combined S5, S6 (b) at pyramidal geometry.
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Figure: First band of the photoelectron spectrum of NH3:
experimental spectrum (top panel) and present result (bottom panel).
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Figure: Second band of the photoelectron spectrum of NH3:
experimental spectrum (top panel) and present result (bottom panel).
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The evolution of the adiabatic ground state population after

ionization to the excited state presented up to 100 fs.

Figure: Adiabatic electronic population of the ground state of NH+
3

after excitation into one of the diabatic excited state, as a function of
time in fs.
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